Schwebungen Eine Unterrichtssequenz mit App Schallanalysator

Dr. Markus Ziegler Letzte Änderungen: November 2023

Einstieg im Plenum: Lehrer schlägt beide Stimmgabeln an Beobachtung: Ton wird periodisch lauter und leiser

Durch Zusatzmassen verstimmte a1-Stimmgabel

Aufgabe 1 (Ich-Du-Wir):

Was ist die Ursache für diese "Schwebung"?

- a) Stellen Sie eine Hypothese auf.
- b) Planen Sie Experimente, mit deren Hilfe Ihre Hypothese überprüft werden kann. Zur Verfügung stehen hierfür folgende Materialien:
 - Eine a1-Stimmgabel
 - Eine a1-Stimmgabel mit zwei Zusatzmassen
 - App Schallanalysator (iOS, Android) oder Spaichinger
 Schallpegelmesser (f
 ür Windows-Notebooks) mit folgenden Fenstern:
 - Grundfrequenz
 - Oszilloskop

Aufgaben: Siehe "Aufgaben Schwebung"

Im Plenum (Wir):

- 1) Sammeln der Hypothesen (Beispiele):
 - i. Stimmgabel mit Zusatzmassen schwingt ungleichmäßig
 - ii. Resonanzkasten verursacht Schwebung
 - iii. Stimmgabel mit Zusatzmassen hat eine etwas tiefere Frequenz als Stimmgabel ohne Zusatzmassen. Überlagerung verursacht Schwebung
- 2) Sammeln, Diskussion, Durchführung und Auswertung der Experimente (Beispiele):
 - i. Schlage nur die Stimmgabel mit den Zusatzmassen an Ergebnis: keine Schwebung
 - ii. Schlage nur die Stimmgabel ohne Zusatzmassen an Ergebnis: keine Schwebung
 - iii. Messungen mit App Schallanalysator: Siehe nächste Folie

Schwebungen – Einschub: Info für Lehrer

Schwebung: Überlagerung a1-Stimmgabel mit verstimmter Stimmgabel 1,2 0,6 oo(f)²/pomax² Druck in Pa Druck in Pa · · · · · · · _____ -0,6 0,0 -1,2 3000 4200 5400 2977 2979 400 2975 200 600 Zeit in ms Zeit in ms f in Hz; fmax 440 Hz d1 e^1 f1 d¹ f1 dis¹ dis¹ e^1 Auflösung des Spektrums (FFT) zu gering, um cis1 cis¹ fis¹ fis¹ 437,2 Hz 437,2 Hz Einzelfrequenzen zu trennen ົບ G ۍ g_ ص Ъ, a¹: 440,0 Hz a¹: 440,0 Hz a¹: 440,0 Hz h¹ gis¹ h¹ gis¹ h¹ ais¹ a¹ ais¹ a¹ a¹ gis¹ ais¹

Frequenz des hörbaren Tons liegt nahe bei den Einzelfrequenzen Exakt in der Mitte zwischen den Einzelfrequenzen, falls Amplituden gleich groß

Messoption "Erweiterte Messung schnell"

Spaichinger Schallpegelmesser: SuS muss Bedienung des Doppeltongenerators vor Bearbeitung von Aufgabe 2 erklärt werden!

💥 Tong	generator			- • •					
Töne	Töne Rechteckpuls								
Ausgabemöglichkeiten									
⊖ Stereo: Beide Töne getrennt			Start longenerator						
Mono: Beide Töne überlagert			Werteansicht bei Mono						
O Mono: Nur Ton 1			Direkt ohne Mikrofon (langsam)						
Ton 1									
Freque	enz in Hz:	440	Schrittweite:	1 Hz 🗸					
Amplit	ude in %:	100	Schrittweite:	1 % ~					
-Ton 2									
Freque	enz in Hz:	450	Schrittweite:	1 Hz 🛛 🗸					
Amplit	ude in %:	100	Schrittweite:	1 % ~					
Phasenverschiebung zu Ton 1									
in Pi/1	00:	0	Schrittweite:	1 Pi/100 ~					

Falls eine dieser Optionen gewählt wurde, werden die Schallgrößen des ausgestrahlten Schalls, inklusive Oszilloskop und Spektrum, **direkt**, d.h. ohne den Umweg über das Mikrofon angezeigt.

Falls diese Kästchen deaktiviert sind, kann parallel zum Betrieb des Tongenerators eine Schallmessung über ein Mikrofon durchgeführt werden.

App Schallanalysator seit Version 2.2: SuS muss Bedienung des Doppeltongenerators vor Bearbeitung von Aufgabe 2 erklärt werden!

≁)							
St	Stereo		Mono		Direkt			
-	+	1	10	100	1000			
Start 1		400 Hz		Ampl.: 100%				
Start 2		41(410 Hz		Ampl.: 100%			
Phasenverschiebung: 0 Pi/100								
د- Druck in Pa د-			45 Zeit in	√ √ ↓ ↓ ↓				
F	enster		ZZ		Start			

Falls die Optionen "Direkt" gewählt wurde, werden die Schallgrößen des ausgestrahlten Schalls, inklusive Oszilloskop und Spektrum, **direkt**, d.h. ohne den Umweg über das Mikrofon angezeigt.

Falls dieses Kästchen deaktiviert ist, kann parallel zum Betrieb des Tongenerators eine Schallmessung über das Mikrofon durchgeführt werden.

App Schallanalysator seit Version 2.2: SuS muss Bedienung des Doppeltongenerators vor Bearbeitung von Aufgabe 2 erklärt werden!

Antippen von Start 1 und (oder) Start 2: Ein Ton mit der angegebenen Frequenz und relativen Amplitude wird abgespielt. Durch Antippen des Frequenz- bzw. Amplitude-Buttons können auch während der Tonausgabe diese Größen geändert werden.

2. Zeile: Einstellung der Schrittweiten für das Ändern der Frequenz-, Amplituden- und Phasenverschiebung

Phasenverschiebung zwischen Ton 1 und Ton 2

Aufgabe 2 (Ich-Du-Wir): Nun wollen wir die Ergebnisse von Aufgabe 1 verallgemeinern und vertiefen. Hilfsmittel: App Schallanalysator oder Spaichinger Schallpegelmesser mit folgenden Fenstern:

- Tongenerator im Modus "Direkt" (Erzeugung und Überlagerung von 2 Tönen)
- Oszilloskop mit Fadenkreuz "ZZ" zur exakten Ablesung von Zeiten
- a) Überprüfen Sie die Hypothese: Werden 2 unterschiedliche Töne mit nahe beieinander liegenden Frequenzen $|f_1 f_2| \le 15$ Hz überlagert, so entsteht eine Schwebung.
- b) Untersuchen Sie, wie die Schwebungsfrequenz f_s (Definition siehe nächste Folie) von den Frequenzen f_1 und f_2 der beiden Töne abhängt. Für diese Teilaufgabe sind gestufte Hilfen vorhanden.

Aufgaben: Siehe "Aufgaben Schwebung"

Schwebungsperiodendauer: T_s

Definition Schwebungsfrequenz: $f_s = \frac{1}{T_s}$

Aufgabe 3:

In Aufgabe 2 haben wir induktiv die Gleichung $f_s = |f_1 - f_2|$ für die Schwebungsfrequenz f_s gefunden. In dieser Aufgabe möchten wir Schwebungen mithilfe des Zeigerdiagramms besser verstehen. Hilfsmittel: GeoGebra-Datei: <u>https://www.geogebra.org/m/uzg7jgcc</u>

- a) (Ich-Du-Wir): Erklären Sie mithilfe des Zeigerdiagramms die Entstehung einer Schwebung.
- **b)** Schwere Zusatzaufgabe: Leiten Sie deduktiv mithilfe des Zeigerdiagramms die Gleichung $f_s = |f_1 f_2|$ her. Für diese Teilaufgabe sind gestufte Hilfen vorhanden.

Aufgaben mit gestuften Hilfen: Siehe "Aufgaben Schwebung"